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ABSTRACT 

Accurate simulation models of social networks 
enable over time prediction, statistical testing of 
hypothesis about social groups, and enables researchers to 
develop more informed hypotheses for human 
experimentation, by evaluating them and reasoning about 
them using simulation. Several methods for simulating 
social network behavior are compared. The multi-agent 
simulation Construct is shown to be an excellent approach 
for simulating social behavior. The stochastic engine 
closely resembles an independently developed statistical 
framework for dynamic, temporal networks called the 
Link Probability Model (LPM). This paper illustrates that 
Construct, a multi-agent network model for the co- 
evolution of agents and socio-cultural environments, is a 
viable choice for most network simulation needs because 
it is based on the LPM concepts which perform well on 
empirical data. Further, with the ability to add additional 
network dependence, Construct is able to leverage 
flexibility to produce statistically greater conjectures on 
network structure and knowledge diffusion than 
alternatives. 

1. INTRODUCTION 

Network analysis of social groups allows 
investigators to study the effects of relational variables 
and relational dependence on group behavior. Traditional 
analysis focuses on the attributes of individuals. While 
this is still important, it overlooks important information 
about social dynamics. For example, if we look at the 
attributes of one of the London subway bombers, we 
could identify their income level, ethnic origin, 
educational level, age, and many other variables. We 
might also find similar individuals who possess all of 
these same attributes, yet they do not engage in terrorist 
activity. What is the difference? We submit that the 
terrorist maintains social connections with other terrorists, 
while the similar individual who does not engage in 

terrorism maintains greater connections with the general 
population. Therefore, network analysis provides insight 
into an important dimension of group behavior. 

Social network analysis (SNA) provides a 
mathematical framework to investigate relationships 
between social entities (i.e. people, groups, tasks, beliefs, 
knowledge, etc.). These entities are modeled with nodes 
and their connections or relationships are modeled with 
links. Not all nodes are connected to each other and some 
nodes may have multiple connections. This mathematical 
model is applicable in many content areas such as 
communications, information flow, and group or 
organizational affiliation (Tichy et al., 1979; Wasserman 
and Faust, 1994). SNA thus relies heavily on graph 
theory to make predictions about network structure and 
thus social behavior. 

Recently, a great deal of literature has been focused 
on methods for simulating network structure. Simulation 
offers a number of advantages to the researcher. First, we 
can use simulation to emulate the behavior of individuals 
and predict behavior over time. For example, when 
analyzing over time data, real world data at time 1 can be 
used to initialize the simulation program. The simulation 
can then be used to predict data at time 2. Second, to the 
extent that such predictions are accurate, we can use the 
simulation to do hypothetical "what if analyses. For 
example, we can use the simulation program to examine 
alternate hypothetical societies to see what differences in 
such societies might be necessary to get a different 
outcome than that perceived in the real data. 

The value of such an exercise, is not that it proves 
why the group or society changed as it did, but that such 
an exercise provides a way of reasoning about the 
situation, and enables the researcher to create more 
informed hypotheses that can then be empirically tested. 
In sociology, as we move to dynamic models with 
feedback we will find that they capture more of the social 
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situation, but that it is incredibly difficult for the 
researcher to think through, without mistakes, the 
implications of such models. Simulation becomes a tool 
for increasing the specificity of theory, thinking through 
the theoretical implications, and generating testable 
predictions. 

In this paper, we provide an overview of several 
competing methods of network simulation. Differences 
and similarities are identified. The link probability model 
(LPM) is briefly illustrated and we identify why it is in 
many cases favorable to the exponential random graph 
(ERG) model. We then move on to summarize Construct 
and its roots in constructural sociological theory. We 
discover that the (LPM) provides a mathematical bridge 
between empirically observed data and the multi-agent 
simulation, Construct, which is based on constructuralist 
theory. Construct, in turn, introduces additional relational 
dependence into the LPM correcting for its naive 
assumption of independence. Finally, we depict how this 
sociological theory translates into the LPM, how 
Construct leverages the LPM, and relate the results of 
empirical studies conducted by others on the effectiveness 
of Construct vice other alternatives. 

2. EXPONENTIAL RANDOM GRAPH MODELS 

ERG models are used in social network analysis as a 
statistical model that enables an analyst to conduct 
inference on dependent relational data (Goodreau, 2007; 
Robins, et. al., 2007). The ERG model is therefore less 
restrictive than earlier models for social networks that 
assumed dyadic independence (Holland and Leinhardt, 
1981). In many social network applications the 
relationship between two individuals depends on 
relationships between the individual and others in the 
network; cognitive limits on the number of relationships 
that can be maintained; similarity between individuals; 
and more. The ERG model framework for relaxing the 
dyadic independence assumption is thus essential for 
accurate inference in many data sets. 

Estimating ERG model terms and parameters can be 
computationally challenging in large networks (Snijders, 
2002; Pattison and Robins, 2002). Markov chain Monte 
Carlo estimation of ERG models has been used to fit these 
models to data (Goodreau, 2007; Robins, et. al., 2007; 
Handcock, 2003, 2002; Snijders, 2002; Pattison and 
Robins, 2002). The Markov dependence in these models 
leads to problems of degeneracy, which is discussed in 
detail by Handcock (Handcock, 2003, 2002). Essentially, 
model degeneracy occurs when the observed data is 
almost impossible under the specified model. This often 
occurs when explanatory terms are highly correlated and 
there is insufficient data to construct an appropriate 
model. Several advances in ERG models have been 
proposed to include curved exponential family models 

(Hunter and Handcock, 2006) and neighborhood models 
(Robins, et. al., 2005). It is not clear that these advances 
have completely removed issues of model degeneracy, 
however. 

3. LINK PROBABILIY MODEL 

The LPM (McCulloh et al., 2007) has been proposed 
as an alternative model to the ERG model. The LPM 
framework for viewing the probability space of a social 
network avoids issues of model degeneracy, while 
preserving flexibility for modeling dyadic relationships. It 
provides researchers with an improved means to 
understand the probability space of the network, under 
certain conditions. The LPM is a square matrix where the 
rows and columns correspond to the nodes in a social 
network. The entries are the link probabilities of the 
directed link from the row node to the column node. This 
is not to be confused with an adjacency matrix, where the 
entries are either zero or some number representing the 
strength of a relationship between nodes. The link 
probability is a number between 0 and 1, and determines 
the likelihood of a link being present in an observed 
adjacency matrix. 

The link probabilities can be derived from empirical 
data in several ways. Given network data collected over 
multiple time periods on a group of subjects, the link 
probabilities can be estimated by the proportion of link 
occurrences, e(i,j), for each cell in the adjacency matrix, 
a(ij). In the case of communication networks, statistical 
distributions can be fit to the time between messages for 
each potential link in the network. For a specified period 
of time, t, the link probability p for each set of entities i 
and j can be found by integrating over the probability 
density function from 0 to t. 

Relational dependence in link probability are 
accounted for in the LPM by the historic presence of 
links. Relational dependence in links can occur for many 
reasons. One example is if a boss sends an email to two 
employees telling them to work on a project; that will 
affect the probability of communication between the two 
employees. The LPM does not modify the link 
probability based on these perceived factors that may 
adjust the probability of two nodes having a relationship. 
The LPM accounts for the relational dependence, by 
assuming that it will be inferred by the historic presence 
or absence of links between nodes. If a boss often gives a 
task to two employees, then the presence of a link 
between the employees is likely to be more common 
when observing past networks. This does not account for 
all of the relational dependence in the network. In order 
to introduce a realistic degree of dependence, the LPM 
would need to be modified at each time step based on 
social theory established in the literature. 



4. CONSTRUCT: MULTI-AGENT SIMULATION 

Construct is a multi-agent simulation grounded in 
contructuralist theory (Carley, 1990, 1995). The LPM 
provides the stochastic engine for the multi-agent 
simulation. At each time step the link probabilities are 
determined by the nodes' perceived homophily, socio- 
demographics, and proximity. These social factors re- 
introduce the additional relational dependence missing in 
the raw LPM. 

Construct is a dynamic-network multi-agent 
simulation model that can be used to examine the 
evolution of social, knowledge and activity networks in 
response to external interventions and the normal course 
of human interaction (Carley, 1990, 1991)1. Network 
evolution and the diffusion of information and beliefs 
through social networks can be examined using Construct 
(Carley, 1995; Hirshman & Carley, 2007b, Hirshman, 
Martin & Carley, 2008 ). Construct captures group 
dynamic dynamics under diverse cultural and 
technological configurations (Schreiber & Carley, 2004). 
Consequently organizational change (Carley & Hill, 
2001), socio-cogntiive inconsistencies (Carley & 
Krackhardt, 1996), the impact of communication 
technologies (Carley, 1995; Carley 2002). To use 
Construct the researcher specifies both the agents replete 
with information processing capabilities (Hirshman, 
Carley & Kowalchuk, 2007a) and the networks in which 
they are embedded (Hirshman, Carley & Kowalchuk, 
2007b). 

Before, we explore the ability for network 
simulation to represent reality, we must first lay the 
foundational theory behind constructuralism as it applies 
to the multi-agent simulation Construct. Advances in 
both cognitive science and network theory have 
engendered the belief that it should be possible to develop 
analytical models of the relationships between individuals 
that would enable quantitative predictions of changes in 
interaction and that take into account both the self and the 
society, the individual and the group, the cognitive and 
the social. These advances have rekindled the dream, 
originally seen in social comparison theory (Festinger, 
1954), cognitive dissonance theory (Festinger, 1957), and 
balance theory (Heider, 1958), that it is possible to build a 
mathematics of group change as a function of individual 
change, yet there is still a gap between the more cognitive 
and individual perspective in which changes in 
relationships between individuals result from independent 
dyadic encounters and the more social and structural 
perspective which changes in relationships between 
individuals result from gross changes to the group. 
Currently a great deal of research is directed at bridging 

The Construct system itself is freely downloadable from the CASOS 
website, http://www.casos.cs.cmu.edu/projects/construct 

this gap. On the individual side the linking of symbolic 
interactionism and role theory can be viewed as a move to 
incorporate social or group factors into an otherwise 
predominantly cognitive. 

Similarly, affect control theory is a move to 
incorporate the social, in terms of task constraints and 
social knowledge, into a cognitive and affective model of 
the individual's evaluation of; and hence determination of 
future action (Heise 1971, 1979, 1987; Smith-Lovin 
1987). The focus on the change in the individual or his or 
her relationships to an actual or a generalized other, treats 
the group or social world as present, but relatively fixed. 
This implicitly assumes that social or group behavior is 
somehow an aggregate of the results of independent 
encounters between pairs of individual. This last 
assumption is not exclusive to those who propose more 
cognitively rich models of behavior. 

For example, we also see it in the work on status 
and dominance where hierarchies are viewed to result 
from independent dyadic encounters (Berger, Conner, and 
Fisek 1974; Rosa and Mazur 1979; Lamb 1986). On the 
up side, evidence is being amassed that group behavior 
cannot be accounted for by aggregating independent 
dyadic encounters (Chase 1974, 1980; Ridgeway and 
Diekema 1989) but is rather an emergent property of the 
simultaneous actions of all group members (Bales 1950; 
Homans 1950; Chase 1974, 1980; Fararo and Skvoretz, 
1986). The mechanism by which such group behavior 
emerges remains elusive. As a step toward locating this 
mechanism, research in the structural and network 
traditions has been moving toward providing 
explanations, and hence predictions, of individual 
cognitive change in terms of the individual's social 
position. 

This can be seen in Burt's model of action (1982) 
where perceived similarity and hence norms, attitudes, 
likelihood of adopting innovations, and so on is a function 
of social position. This is further supported by 
Krackardt's notion (1985, 1986, 1987) that the individual's 
social cognition (which he defines as the individual's 
perception of who interacts with whom) is a function of 
social position. These works reveal a more cognitive actor 
than that revealed by classic structuralist whose behavior 
is nonetheless socially situated. Yet, like the more 
cognitive individual models, these social models of 
individual change, still focus on the change in the 
individual while maintaining a relatively fixed social 
world. Thus, both the individual and the social 
perspectives treat the social world as fundamentally 
stable. Consequently, neither perspective provides a 
mechanism by which such individual changes can 
produce social change. Neither approach is sufficient to 
explain, let alone quantitatively predict, changes in the 
interaction patterns for all members of the society at once. 



Rather, the explanations of social change are highly 
contextual relying on situation specific factors, forces, 
and constraints such as goals, coercion, bureaucratization, 
change in group size, and membership rituals. 

Every group has a population consisting of some 
number of individuals. In every group there is a set of 
information or facts that is potentially learnable by the 
members of the group. This set of information contains 
each piece of information that is known by at least one 
group member. The number of such facts will be denoted 
by K. At a particular point in time, say time period t. The 
individual, for any piece of information, such as k, either 
knows that fact or does not. This is denoted by F (t) = 1 if 
the fact is known by individual at time period t and 0 
otherwise. 

Every society has a culture, which can be thought of 
as the distribution of information across the population. 
At a particular point in time, say time period t, an 
individual i has a certain probability to interact with 
another other member of the society, j. This is exactly 
where the LMP comes into consideration. Every society 
has a social structure, which can be thought of as the 
distribution of interaction probabilities across the 
population. The initial make-up of these probabilities and 
the transition of these probabilities at different time points 
are thus determined by several factors. 

The first assumption of the Construct model posits 
that interaction leads to shared knowledge. It is generally 
demonstrable that individuals acquire information (and 
hence will come to share knowledge) during interactions. 
In order to represent this process a variety of simplifying 
assumptions are made. All pieces of information are 
entirely unstructured and undifferentiated. Thus, the 
individual may know conflicting information such as the 
sky is blue and the sky is green. Consequently, the 
overlap in what two individuals' know is just the sum of 
the pieces of information that they both know. When two 
individuals interact each communicates one fact to the 
other. Individuals always learn the piece of information 
that is communicated to them. Consequently, if individual 
i knows that the sky is blue and individual j knows that 
the sky is green and individual j communicates to 
individual i that the sky is green, the overlap in their 
knowledge increases. Hence they have more shared 
knowledge. All facts known by the individual are equally 
likely to be communicated. 

According to constructuralism, both the individual 
cognitive world and the socio-cultural world are 
continuously constructed and reconstructed as individuals 
concurrently go through a cycle of action, adaptation, and 
motivation. During this process not only does the socio- 
cultural environment change, but social structure and 
culture co-evolve in synchrony. Carley (1991a) defined 

the    following    primary    assumptions    in    describing 
constructuralism: 

1. Individuals are continuously engaged in acquiring 
and communicating information 

2. What individuals know influences their choices of 
interaction partners 

3. An individual's behavior is a function of his or her 
current knowledge 

In addition to these primary assumptions there were a 
series of implicit assumptions that upon explication serve 
to clarify and expand the primary assumptions. 
Following is an expanded list of assumptions, numbered 
to clarify their relation to the primary assumptions: 

la.    Individuals,    when    interacting    with    other 
individuals, can communicate information 

lb.    Individuals,    when    interacting    with    other 
individuals, can acquire information 

lc.   Individuals   can   learn   the   newly   acquired 
information   thus   augmenting   their   store   of 
knowledge 

2a.    Individuals select interaction partners on the 
basis of relative similarity and availability 

2b.  individuals  engage  in interaction concurrently 
thus an individual's first choice of interaction 
partner may not be available. 

3a. individuals have both an information processing 
capability    and    knowledge    which    jointly 
determine the individual's behavior 

3b. individuals have the same information processing 
capabilities 

3c.    individuals    differ   in   knowledge    as    each 
individual's    knowledge    depends    on    the 
individual's  particular  socio-cultural-historical 
background 

3d. individuals can be divided into types or classes on 
the basis of extant knowledge differences. 

These assumptions lead to a simulation template, 
which features a dynamic LPM as the stochastic engine. 
We briefly present Construct in this fashion, and go on to 
show that it performs well in simulated empirically 
obtained networks. 

5. DATA 

The LPM and ERG models are both used to model 
the Sampson (1969) Monk data and the Newcomb (1961) 
Fraternity data. The fit of each of these models is 
compared to the data. 

Sampson recorded social network data on the 
strength of "liking" between monks in a monastery at 
three different points in time. Between surveys, four of 
the monks were actually expelled from the monastery. 



The social network of these individuals was therefore 
changed over time. 

Newcomb provided 17 college transfer students with 
fraternity style housing in exchange for their participation 
in a study on friendship formation. Every week they were 
required to rated on a scale of 1 to 16 their preference for 
others in the house. Since ERG models require binary 
data, we use the dichotomous version of the Newcomb 
data proposed by Krackhardt (1998), which records a 
directed link between node i and node j if node i rated 
node j as one of their top 8 closest relationships in the 
network. There are 15 time periods in the Newcomb data. 

6. COMPARING MODELS 

The ERG model and LPM are investigated for their 
strengths and weakness in modeling longitudinal data in 
McCulloh (2008). We re-present the results here. For the 
Sampson (1969) monk data, an ERG model fit by Hunter, 
et. al. (2008) is used. An ERG model is also fit to the 
Newcomb (1961) fraternity data. An LPM is also fit to 
both the Sampson and Newcomb data sets. Monte Carlo 
simulation is used to generate instances of the Sampson 
Monk social network and the Newcomb Fraternity social 
network under the ERG model and the LPM. 

A distance measure is required to compare the 
similarity between the dichotomous networks generated 
using the ERG model, the LPM, and the empirical data. 
Hamming distance (1950) is a logical choice, since it 
evaluates a distance between dichotomous networks. If 
the data were weighted networks and the models 
generated weighted networks as well, then a Euclidean 

distance would be appropriate. The quadratic assignment 
procedure (QAP) (Krackhardt, 1987) could be used to 
compare the correlation between networks; however, the 
correlation coefficient does not change linearly with 
network distance. The average Hamming distances from 
each empirical data set to every other empirical data set 
and from each simulated network to each empirical data 
set were calculated. These average Hamming distances 
were then compared using a t-test. The results of this test 
indicate whether the LPM or the ERG model, models the 
empirical networks with more or less error. Table 1 
shows the distance between the Sampson Monk data to 
both the ERG and LPM. Table 2 shows the distance 
between the Newcomb Fraternity data to both the ERG 
and LPM. It can be seen in both tables that the p-values 
are significant at the 0.05 level. This means that there is a 
significant difference between how well the ERG and 
LPM model empirical data. The positive values for the 
test statistic indicate that the LPM does a significantly 
better job of modeling empirical data than the ERG. 

Table 1. ERG and LPM Distance to Empirical Data for 
the Sampson Monk Data 

Time period 1 2 3 
Mean Hamming 
Distance for ERG model 98.7 99.1 103.7 
ERG Standard Deviation 5.697 6.2263 6.2902 
Mean Hamming 
Distance for LPM 27.67 24.99 24.66 
LPM Standard Deviation 3.5922 3.5935 3.5945 
T-Test Statistic 39.43 37.64 39.74 
P-value 0.0006 0.0007 0.0006 

Table 2. ERG and LPM Distance to Empirical Data for the Newcomb Fraternity Data 

Time 
Period 

Mean Hamming 
Distance for 

ERGM 

ERG 
Standard 
Deviation 

Mean Hamming 
Distance for 

LPM 

LPM 
Standard 
Deviation t-test p-value 

1 139.7 8.3938 91.9 5.1913 18.0147 0.0353 
2 138.9 8.1847 75.1 5.2128 24.6573 0.0258 
3 137.3 8.2872 48.3 5.2226 33.9732 0.0187 
4 135.5 9.3363 49.7 5.2340 29.0460 0.0219 
5 134.1 8.9870 50.1 5.2319 29.5558 0.0215 
6 136.3 8.5251 45.5 5.2440 33.6983 0.0189 
7 133.9 9.0609 47.3 5.2397 30.2202 0.0211 
8 134.1 7.2946 51.9 5.2591 35.6377 0.0179 
10 133.7 5.1865 64.2 5.2223 42.3990 0.0000 
11 132.7 6.0562 53.4 5.2074 41.4119 0.0006 
12 136.3 8.4466 51.1 5.2147 31.8930 0.0200 
13 134.9 9.0117 46.6 5.2311 30.9989 0.0205 
14 133.9 5.4457 46.1 5.2230 50.9574 0.0000 
15 133.1 5.7242 47.2 5.2378 47.4518 0.0004 



A similar test was done to compare the Hamming 
distance between the empirical data at each time point, 
with the empirical data at all other time points. The 
results are omitted due to space restrictions. The LPM 
was found to have no more error than that present 
between different time points in the empirical data. This 
provides evidence to validate the LPM as an effective 
method for simulating data. 

The LPM has additional advantages. The LPM 
avoids the issues of model degeneracy inherent in the 
ERG model. The probability of link occurrence is based 
on the historic presence of links and does not use a 
Markov assumption or over specify a statistical model. 
For these reasons, the LPM provides an alternative 
method for modeling and conducting longitudinal social 
network analysis. For our purpose in this paper, the 
LPM's success makes it a reasonable stochastic engine 
for the Construct multi-agent simulation model. The 
multi-agent simulation simply adds additional relational 
dependence into a model that already performs well to 
make it more realistic and capable of evolution over 
time. 

7. DISSCUSSION 

The theoretical underpinnings of constructuralism 
as manifested in Construct lead us to a multi-agent 
simulation which utilizes a dynamic LPM as a stochastic 
engine for the development of knowledge diffusion and 
relationship building. What does this simulation provide 
the user? 

The simulation provides an accurate, realistic 
simulation of social dynamics. We envision several 
ways in which this will be important to the military in 
particular and the wider academic audience in general. 

Construct can be used as a valuable decision 
support tool for military commanders. The social 
dynamics of terrorist organizations, local culture, or 
friendly military forces can all be modeled with the 
simulation. A commander can war-game potential 
courses of action, and evaluate alternatives using 
Construct. It can be very difficult to reason through the 
many potential interactions, factors, and competing 
theories. This simulation provides a framework that is 
grounded in social theory, and validated against 
empirical evidence, that can be used to evaluate potential 
courses of action. 

For example, a commander might consider 
detaining one or more suspected terrorists. By modeling 
the course of action in Construct, he can observe the 
impacts of removing the individual, on the organizations 
performance, situational awareness, and overall 
effectiveness.   Given limited resources, the commander 

could even use the simulation to optimize the individuals 
to remove from the social group. The simulation 
provides the military analyst the ability to predict the 
future social dynamics of an organization. This is a 
powerful combat multiplier for today's non-kinetic 
asymmetric war fighter. 

The Army could also use Construct to evaluate the 
organizational structure of newly formed doctrinal units, 
such as the Future Combat System (FCS) operational 
units. The simulation can evaluate which personnel 
communicate more or less frequently. This can help 
inform efficient organization of soldiers from staff 
organizations to vehicle crews. 

Focused research on social groups can follow better 
experimental design, and yield greater knowledge, if an 
array of research questions is first evaluated in 
simulation. Social dynamics are complex and it can be 
difficult to correctly reason through different scenarios. 
Simulation can provide insight that may shape the 
research questions to be more effective. 

Finally, the normal behavior of an organization can 
be simulated many times. From the simulations, 
statistical distributions can be fit to various measures of 
group behavior. These statistical distributions can be 
used to evaluate statistical hypotheses or to detect 
statistically significant differences between observations 
of the group and normal behavior. This statistical 
framework, therefore, increases the relevant findings one 
can discover in socially dynamic organizations. 

8. CONCLUSION 

We have presented two models for describing the 
behavior of social networks: the ERG model and the 
LPM. Both models were fit to two famous data sets in 
the literature, the Sampson Monk data, and the 
Newcomb Fraternity data. The LPM modeled the data 
with a statistically significant better fit than the ERG 
model. The benefit of the LPM was further 
demonstrated by finding that the difference between the 
LPM fit and the empirical data, was no larger than the 
average difference between any two samples of the 
empirical data. 

The key limitation of the LPM is that it does not 
account for all of the relational dependence that is known 
to exist in socially connected groups. The multi-agent 
simulation Construct conveniently overcomes this 
limitation. Construct essentially uses the LPM as its 
stochastic engine. The link probabilities at each time 
step are affected by constructuralist theory established in 
the literature. Factors such as perceived homophily, 
shared knowledge, proximity, and socio-demographic 
variables all affect the link probabilities at each time 



period. These factors introduce relational dependence 
into the LPM. The relative weighting that these factors 
have can be adjusted by the user. This creates a flexible 
simulation tool, grounded in empirical evidence and 
sociological theory. 

While Construct may be a powerful simulation tool, 
the current user interface limits its' capability. The 
Organizational Risk Analyzer (ORA) is a software 
package maintained by the Center for Computational 
Analysis of Social and Organizational Systems (CASOS) 
at Carnegie Mellon University. ORA has an interface for 
near-term impact, which allows the user to isolate certain 
agents in a socially networked group and evaluate the 
impact of the isolations through simulation using 
Construct. Other than this interface, simulation runs 
must be conducted using an xml script. Future research 
will hopefully provide funding to better develop the user 
interface for the simulation. An improved user interface 
might make Construct available to a brigade staff to 
better evaluate various courses of action. This improved 
ability to war-game various scenarios may enhance the 
effectiveness of those military units. 
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